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ABSTRACT The gut microbiome is known to have a complex yet vital relationship
with host health. While both exercise and the gut microbiome have been shown to
impact human health independently, the direct effects of moderate exercise on the
intestinal microbiota remain unclear. In this study, we compared gut microbial diver-
sity and changes in inflammatory markers associated with exercise over an 8-week
period in mice that performed either voluntary exercise (VE) (n � 10) or moderate
forced exercise (FE) (n � 11) and mice that did not perform any exercise (n � 21).
VE mice, but not FE mice, had increased food intake and lean body mass compared
to sedentary mice. The levels of inflammatory markers associated with exercise were
similar for mice in all three groups. Traditional microbial profiles comparing opera-
tional taxonomic units (OTUs) in samples (P � 0.1) and multivariate analysis of beta
diversity via Adonis testing (P � 0.1) did not identify significantly altered taxonomic
profiles in the voluntary or forced exercise group compared to the sedentary con-
trols. However, a random forests machine learning model, which takes into account
the relationships between bacteria in a community, classified voluntary exercisers
and nonexercisers with 97% accuracy at 8 weeks. The top bacteria used by the
model allowed us to identify known taxa (Bacteroides, S24-7, and Lactobacillus) and
novel taxa (Rikenellaceae and Lachnospiraceae) associated with exercise. Although
aerobic exercise in mice did not result in significant changes of abundance in gut
microbes or in host inflammatory response, more sophisticated computational meth-
ods could identify some microbial shifts. More study is needed on the effects of vari-
ous exercise intensities and their impact on the gut microbiome.

IMPORTANCE The bacteria that live in our gut have a complex yet vital relationship
with our health. Environmental factors that influence the gut microbiome are of
great interest, as recent research demonstrates that these microbes, mostly bacteria,
are important for normal host physiology. Diseases such as obesity, diabetes, inflam-
matory bowel disease, and colon cancer have also been linked to shifts in the micro-
biome. Exercise is known to have beneficial effects on these diseases; however,
much less is known about its direct impact on the gut microbiome. Our results illus-
trate that exercise has a moderate but measurable effect on gut microbial communi-
ties in mice. These methods can be used to provide important insight into other fac-
tors affecting the microbiome and our health.
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The microbial populations that naturally inhabit the host are referred to as the
microbiome. Changes to the host environment, such as selective pressures brought

about by antibiotic use (1) or inflammation due to bacterial infection (2), can disrupt the
community that is normally found in the host. In healthy individuals, the microbiotas
are generally able to reestablish their functional niches after these types of disruptions
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(1–3). Conversely, it is also known that environmental factors, such as diet, contribute
to changes in an individual’s gut microbiota throughout their lifetime (4).

Recent research into the human gut microbiome has revealed its complex relation-
ship with human health. Intestinal microbiota has been shown to be an important
contributor to normal host physiology, including immune development and the me-
tabolism of energy and drugs (5, 6). Changes in the gut microbiota have been linked to
obesity, diabetes, cardiovascular disease, inflammatory bowel disease, and colon cancer
(7–13). Exercise has been shown to have beneficial effects on these same pathological
states (14, 15), in part through the modulation of levels of inflammation (16). Further-
more, exercise has been shown to have both acute and chronic effects, and it is these
chronic effects that have positive outcomes on disease states (17). However, what
remains unclear is whether the chronic effects of exercise on inflammation alter the
intestinal microbiome.

Several studies have attempted to describe the relationship between exercise and
the microbiome. The impact of exercise with both age and nutrition has been studied
in rodents (18–20). Mika et al. showed that age affects the impact that exercise has on
the microbiome in rats (20). Young rats (3 weeks old) were more susceptible than adult
rats (10 weeks old) to changes in microbial diversity as a result of exercise. Queipo-
Ortuño et al. fed 6-week-old male rats either restrictively or ad libitum, with and without
free access to an exercise wheel, and found that exercise increased gut bacterial
diversity when the rats had unlimited access to food (18). This study was performed
over only a 6-day period and limited by the use of PCR-DGGE (denaturing gradient gel
electrophoresis), an insensitive method for microbial composition analysis. In contrast,
a study examining the effects of both calorie restriction and voluntary exercise on the
gut microbiome, also using 6-week-old male rats, found that exercise alone had no
significant effects on microbial composition (19). The conclusions of this study were,
however, largely focused on the diet component of the experiment, and fecal sampling
did not start until 62 weeks into the study. A study by Cook et al. (21) demonstrated
that voluntary wheel running attenuated, while forced treadmill running exacerbated
disease progression in a mouse colitis model. When they compared the effects of
voluntary and forced exercise on gut microbial diversity in healthy mice, they found
both to have distinct and significant effects on community structure (22). In humans,
elite athletes undergoing high-volume, high-intensity exercise had higher microbial
diversity and metabolic pathways, as well as an increase in fecal metabolites such as
short-chain fatty acids, but these differences could not be clearly separated from diet
differences (23, 24).

In this study, we investigate the direct effects of exercise on the gut microbiome
using both voluntary and moderate forced exercise models in mice, while controlling
for diet and measuring changes in food intake, body mass composition, and host
immunological expression.

RESULTS
Voluntary but not forced exercise results in higher food intake and lean mass.

In the voluntary wheel running cohort, each voluntary exercise (VE) mouse had access
to a running wheel at all times. The cumulative distance (in meters) traveled by each VE
mouse was totalled for the 8 weeks. The mean total distance for the group was
calculated at 138,565 m, with the mice running an average of 2.5 � 0.7 km a day. In the
forced treadmill running group, each exercise mouse ran for 40 min, 5 days a week. The
cumulative distance (in meters) traveled by each forced exercise (FE) mouse was 21 km.
The distances run per day by the FE mice were 600 m in weeks 1 and 2, 700 m in weeks
3 and 4, and 800 m in weeks 5 and 6. Food intake was measured per mouse on a weekly
basis for the duration of the experiments (7 weeks for the voluntary cohort and 6 weeks
for the forced cohort). A schematic of the experimental timeline is shown in Fig. S1 in
the supplemental material. The cumulative food intake was averaged for each week
(Fig. 1). Two-sample t tests for equal means were used to compare the mean cumulative
food intake between exercise and control mice at each time point. Mice in the voluntary
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control (VC) group ate significantly less food overall than their VE counterparts, starting
at week 2 (P � 0.05). Mice in the FE group had comparable food intake to the forced
controls (FC) at each time point (P � 0.5).

Body mass measurements (in grams) for all mice were taken every 2 weeks (starting
at week 2 for the voluntary cohort and week 0 for the forced cohort) of the experi-
mental timeline (Fig. 2A and B). Two-sample t tests for equal means were used to
compare the mean body weights for exercise and control mice at each time point. Body
mass was not statistically different between the control and exercise mice in either
cohort at any time point (P � 0.5). Dual-energy X-ray absorptiometry (DEXA) scans
showed that lean body mass (calculated as a percentage of total body mass) (Fig. 2C

FIG 1 Voluntary but not forced exercise alters food consumption in mice. (A and B) Box plots depict average
weekly food intake (in grams) of exercise and control mice for the voluntary exercise cohort (A) and the forced
exercise cohort (B). Comparisons were conducted using two-sample t tests with a significance cutoff of P � 0.05.
Values that are significantly different at time points are indicated with a bar and asterisk.

FIG 2 Voluntary but not forced exercise promotes lean body mass in mice. (A and B) Box plots depict average biweekly
body mass measurements of exercise and control mice for the voluntary exercise cohort (A) and the forced exercise cohort
(B). (C and D) Bar graphs illustrate percent lean body mass for the voluntary exercise cohort (P � 0.046) (C) and the forced
exercise cohort (P � 0.124) (D). Comparisons were conducted using two-sample t tests with a significance cutoff of P �
0.05. Values that are significantly different at time points are indicated with a bar and asterisk.
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and D) was significantly different between voluntary exercise mice and control mice
(83.6% � 1.2% for VE mice and 80.8% � 0.5% for VC mice; P � 0.046) but did not differ
between forced exercisers and controls (P � 0.1). When the forced exercise cohort was
divided into male and female subsets, there was no significant difference between
exercisers and controls.

Voluntary and forced exercise have no measurable effect on bacterial diversity
in the mouse microbiome. Fecal samples were taken every 2 weeks from mice in both
cohorts, while mucosal samples were taken at the experimental endpoint. There was no
significant difference in alpha diversity (species richness) between exercise and control
mice at week 8 in the voluntary exercise cohort (P � 0.180) or at week 6 in the forced
exercise cohort (P � 0.227) (Fig. 3A and B). Species richness for mucosal samples was
calculated in the same fashion (Fig. 3C and D) and was also not found to be different
in either cohort (P � 0.337 for voluntary exercise; P � 0.289 for forced exercise).
Taxonomic data from fecal samples were also used to generate weighted UniFrac
beta-diversity principal coordinate axis plots for each time point using weighted (Fig. 4)
and unweighted (Fig. S2) UniFrac beta-diversity measurements. An Adonis test did not
reveal a significant difference in community structure between the fecal samples at
each time point for the voluntary exercise cohort (week 0 [W0], R2 � 0.0476, P � 0.493;
W2, R2 � 0.0751, P � 0.257; W4, R2 � 0.0746, P � 0.203; W6, R2 � 0.0226, P � 0.933;
W8, R2 � 0.0836, P � 0.146) or forced exercise cohort (W0, R2 � 0.0370, P � 0.775; W2,
R2 � 0.0399, P � 0.634; W4, R2 � 0.0576, P � 0.386; W6, R2 � 0.0496, P � 0.414) when
using weighted UniFrac. Altering the beta-diversity measurement to unweighted Uni-
Frac or Bray-Curtis (at different taxonomic levels) did not result in statistical significance
(data not shown). Statistical comparisons of the relative abundances of individual taxa
did not reveal any significant differences at any taxonomic level after multiple test
correction.

FIG 3 Voluntary and forced exercise do not affect species richness in the mouse gut. The number of OTUs from
each fecal and mucosal sample at the final week (week 8 for VE and week 6 for FE) were counted, and counts per
sample were averaged for each experimental group. Box plots illustrate average species richness of control and
exercise groups for both voluntary exercise fecal samples (A) (P � 0.180) and mucosal samples (C) (P � 0.337) and
forced exercise fecal samples (B) (P � 0.227) and mucosal samples (D) (P � 0.289). Comparisons were done using
two-sample t tests.
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FIG 4 Gut microbial diversity of mice in voluntary and forced exercise groups. Weighted UniFrac principal coordinate axis
plots compare the gut microbial diversity of exercise and control mice from the voluntary exercise cohort (A) and the
forced exercise cohort (B). The beta diversity of fecal samples was compared using an Adonis test with a significance cutoff
of P � 0.05. PC1, principal component 1.
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Moderate exercise does not alter expression of inflammatory markers. The
results showed that serum levels of interleukin 1� (IL-1�), IL-6, and alpha tumor
necrosis factor (TNF-�) did not differ significantly between the voluntary and forced
exercise groups nor did the concentrations differ between either exercise group and
the controls. The only marker found to have significantly different expression was
keratinocyte-derived chemokine (KC), a neutrophil marker, homologous to IL-8 in
humans (Table 1). KC was increased by almost 45% in voluntary exercisers alone (P �

0.001).
Machine learning identifies shifts in the mouse gut microbiome in response to

exercise. Using Scikit-learn (25), a machine learning classification method known as
random forests was trained and tested using a leave-one-out approach on the opera-
tional taxonomic unit (OTU) tables. In comparison to statistical comparisons of single
taxa, machine learning can identify shifts in community structure that involve multiple
taxa. Machine learning was able to distinguish between the microbiomes of VE and VC
mice with 97% accuracy at week 8 and between FE and FC mice with 86% accuracy at
week 6 (Fig. 5). Compared to a randomized model (where sample labels are random-
ized), the exercise microbiome could be accurately classified after 6 weeks of forced
exercise and 8 weeks of voluntary exercise (Fig. 5).

The most important features/OTUs for classification as determined by the random
forests model were inspected (Tables 2 and 3). We observed that in the voluntary
exercise cohort, out of the top 30 taxa, 23 belong to the phylum Bacteroidetes, 4 belong
to Firmicutes, 2 belong to Proteobacteria, and 1 belongs to Actinobacteria. Of the 23 taxa
in the Bacteroides phylum, 18 of them are part of the S24-7 family, 4 are Bacteroidaceae,
and 1 is Rikenellaceae. The four Firmicutes taxa fall into the order Clostridiales (Table 2).
In the forced exercise cohort, 24 out of the top 30 taxa were from the Firmicutes
phylum, while 6 were Bacteroidetes. Out of the 24 taxa in the Firmicutes phylum, 19 are
in the order Clostridiales, 4 are in Lactobacillales, and 1 did not have an assigned order.
Five out of the six taxa in the Bacteroidetes phylum belong to the Bacteroides genus, and
the other is a Parabacteroides (Table 3).

TABLE 1 Inflammatory cytokine profiles of control and exercising mice

Group
IL-1� concn
(pg/ml)

IL-6 concn
(pg/ml)

TNF-� concn
(pg/ml)

KC concn
(pg/ml)

Controls 212.79 � 16.32 3.76 � 0.40 155.68 � 23.78 26.77 � 1.45
Voluntary exercisers 227.10 � 13.32 3.87 � 0.45 173.02 � 30.63 38.52 � 1.52a

Forced exercisers 238.90 � 11.07 4.96 � 0.95 229.47 � 60.37 27.85 � 1.93
aSignificantly different compared to the value for the control group.

FIG 5 Accuracy of the random forests model in classifying exercise versus control samples. Sample OTU
tables from exercise and control fecal samples for the voluntary exercise (A) and forced exercise (B)
experiments was used to train a random forests classifier. Accuracy of the model using true category labels
is plotted over time for both voluntary (97% at week 8) and forced (86% at week 6) cohorts. Accuracy using
randomized category labels is also plotted over time for the voluntary exercise cohort (58% at week 8) and
forced exercise cohort (58% at week 6).
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DISCUSSION

The relationship between exercise and human health has been studied extensively,
and it has been found that exercise makes a number of positive contributions to our
health (26). Diet has also been shown to have a strong influence on our health and has
been directly implicated in alteration of the gut microbiome (27). Environmental factors
that influence gut flora are of great interest, as recent research demonstrates that these
microbes are important for healthy host physiology. The effect that exercise has on gut
microbial composition is an emerging field of interest, but so far, only a handful of
studies have been done. Links between exercise, the gut microbiome, and disease have
been studied through an increase in protective short-chain fatty acids (28, 29) and a
decrease in bacteria associated with colorectal cancer and obesity (30, 31). These
studies have not given consistent conclusions, so this study therefore aimed to char-
acterize the impact that moderate exercise has on gut microbial diversity in a well-
controlled setting. Controlled conditions included identical housing and food type, as
well as regular measurements of food intake, body mass, and exercise levels.

Differences in body mass composition and food intake between control and exercise
mice in the voluntary exercise study demonstrates that this exercise protocol did
indeed have a tangible physiological effect on its subjects. Voluntary exercise mice not
only had significantly less fat body mass and higher lean body mass than control mice,
but they also maintained a higher level of food intake throughout the study. However,
this effect was not seen in the forced exercise study, suggesting that this program did
not induce the same stress in the mice as the voluntary one. This idea is supported in

TABLE 2 Top 30 OTUs important in classifying samples from mice in the control group versus voluntary exercise groupa

OTU IDb Phylum Order Family Genus Weightc

Abundance (%) in
samples from:

Control
group

Exercise
group

New.CleanUp.ReferenceOTU352 Bacteroidetes Bacteroidales S24-7 0.09377 0.00582 0.02588
348680 Proteobacteria Enterobacteriales Enterobacteriaceae 0.07741 0.07338 0
568410 Bacteriodetes Bacteroidales S24-7 0.05490 0 0.00906
New.ReferenceOTU52 Bacteroidetes Bacteroidales Bacteroidaceae Bacteroides 0.05477 0.10600 0.19284
New.ReferenceOTU71 Bacteroidetes Bacteroidales S24-7 0.05009 0.01864 0.04012
New.ReferenceOTU193 Bacteroidetes Bacteroidales S24-7 0.04908 0.00349 0.01941
258910 Bacteroidetes Bacteroidales S24-7 0.04517 0.08270 0.13072
266203 Firmicutes Clostridiales 0.04439 0.05591 0.11001
New.ReferenceOTU393 Bacteroidetes Bacteroidales S24-7 0.04210 0 0.00777
New.ReferenceOTU19449 Bacteroidetes Bacteroidales S24-7 0.03990 0.00116 0.01424
New.ReferenceOTU10 Bacteroidetes Bacteroidales S24-7 0.03804 0.18521 0.31709
New.ReferenceOTU83 Bacteroidetes Bacteroidales S24-7 0.03677 0.01747 0.04530
348821 Bacteroidetes Bacteroidales Bacteroidaceae Bacteroides 0.03671 0.60687 0.36886
264325 Bacteroidetes Bacteroidales Rikenellaceae 0.03401 0.50670 0.29121
336676 Bacteroidetes Bacteroidales S24-7 0.03109 0.59406 0.82444
New.ReferenceOTU542 Bacteroidetes Bacteroidales S24-7 0.03093 0.02912 0.07636
177435 Bacteroidetes Bacteroidales S24-7 0.02969 0.33547 0.63677
162639 Bacteroidetes Bacteroidales S24-7 0.02783 0.48923 0.25885
New.ReferenceOTU1066 Actinobacteria Coriobacteriales Coriobacteriaceae Adlercreutzia 0.02718 0.00116 0.01424
307416 Firmicutes Clostridiales 0.02566 0.00349 0.01165
311482 Bacteroidetes Bacteroidales Bacteroidaceae Bacteroides 0.02298 0.52184 0.35980
214159 Bacteroidetes Bacteroidales S24-7 0.02174 0.40419 0.86326
New.ReferenceOTU31060 Bacteroidetes Bacteroidales S24-7 0.01995 0.00233 0.01035
549837 Proteobacteria Pseudomonadales 0.01510 0.00466 0.01424
215214 Bacteroidetes Bacteroidales S24-7 0.01309 0.03960 0.11260
New.ReferenceOTU505 Bacteroidetes Bacteroidales Bacteroidaceae Bacteroides 0.01280 0.01048 0.02200
180555 Firmicutes Clostridiales Lachnospiraceae Coprococcus 0.01198 0 0.00518
349175 Bacteroidetes Bacteroidales S24-7 0.00691 0.03378 0.02977
New.Cleanup.ReferenceOTU14118 Firmicutes Clostridiales 0.00402 0 0.00259
New.ReferenceOTU25958 Bacteroidetes Bacteroidales S24-7 0.00197 0.00233 0.00647
aTaxa that increased with exercise are indicated by gray shading, and taxa that decreased with exercise are shown on white background.
bID, identification.
cWeight refers to the importance that the random forests (RF) model accords to each taxon.
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the inflammation data, as KC (IL-8 in humans), an exercise-induced cytokine, was higher
in the voluntary cohort but not in the forced exercise cohort. Several studies have
linked changes in inflammation to different forms of exercise in various populations
(32–35). Some of this research has shown that both voluntary and forced exercise act
to reduce proinflammatory cytokines. In our study, there was no change in either
cohort in cytokines IL-1�, IL-6, and TNF-�, which are also commonly induced by
strenuous exercise (36–38). This suggests that there was no chronic effect of exercise on
serum levels of inflammatory markers.

Initial analyses of species richness and sample diversity show that neither exercise
program appears to make a contribution to obvious microbiome changes. These
observations contrast with previous studies that reported significant differences in the
microbiome of both animal models (18, 19, 21, 22) and humans (23) in response to
exercise. There are several reasons for these observational differences, which we
attempted to address further. Initially, we used female mice for the voluntary wheel
running cohort because it had been reported that female mice run more than male
mice (39–41). During the course of our voluntary exercise study, Allen et al. found
microbiome differences due to voluntary wheel running in male mice (22). Therefore,
we decided to use both male and female mice in our forced exercise group; however,
we did not find any sex differences between our mouse microbiomes, with or without
exercise (data not shown). We also noted that Allen et al. (22) sequenced the V4 region
of the 16S rRNA gene, while we had initially sequenced the V6-V8 region. Sequencing
different hypervariable regions of the 16S rRNA gene has been shown to yield different
results on the same data (42–44). Therefore, we conducted additional sequencing of

TABLE 3 Top 30 OTUs important in classifying samples from the control group versus forced exercise groupa

OTU ID Phylum Order Family Genus Weightb

Abundance (%) in
samples from:

Control
group

Exercise
group

213896 Firmicutes Clostridiales 0.13141 0.01800 0.06639
332364 Firmicutes Lactobacillales Lactobacillaceae Lactobacillus 0.09947 6.84490 4.15842
259111 Firmicutes Lactobacillales Lactobacillaceae Lactobacillus 0.07860 0.26050 0.13395
184484 Firmicutes Clostridiales Lactobacillaceae 0.06421 0.06354 0.01864
259372 Firmicutes Lactobacillales Lactobacillaceae Lactobacillus 0.05582 0.81855 0.49738
186871 Firmicutes Clostridiales 0.05352 0.00953 0.03727
New.ReferenceOTU231 Bacteroidetes Bacteroidales Bacteroidaceae Bacteroides 0.04629 0.06142 0.11881
2740953 Bacteroidetes Bacteroidales Bacteroidaceae Bacteroides 0.04055 0.06671 0.13861
4417335 Bacteroidetes Bacteroidales Bacteroidaceae Bacteroides 0.03515 0.06883 0.03960
New.ReferenceOTU3155 Bacteroidetes Bacteroidales Bacteroidaceae Bacteroides 0.03174 0.04871 0.03494
347496 Firmicutes Clostridiales 0.02939 0.01165 0.03378
274380 Firmicutes Clostridiales 0.02882 0.05295 0.18171
New.ReferenceOTU7685 Bacteroidetes Bacteroidales Bacteroidaceae Bacteroides 0.02678 0.00529 0.01631
344527 Firmicutes Clostridiales Ruminococcaceae Ruminococcus 0.02443 0.04977 0.02912
230268 Firmicutes Clostridiales Ruminococcaceae Ruminococcus 0.02365 0.02118 0.00815
New.Cleanup.ReferenceOTU10206 Firmicutes Lactobacillales Lactobacillaceae Lactobacillus 0.02333 0.00847 0
316428 Firmicutes Clostridiales Ruminococcaceae Oscillospira 0.02314 0.06142 0.03145
192111 Bacteroidetes Bacteroidales Porphyromonadaceae Parabacteroides 0.02216 0.00424 0
New.Cleanup.ReferenceOTU6362 Firmicutes Clostridiales Mogibacteriaceae 0.02062 0.00847 0.00116
534498 Firmicutes 0.02026 0.15142 0.03262
New.ReferenceOTU1251 Firmicutes Clostridiales 0.01929 0.00635 0
New.Cleanup.ReferenceOTU2315 Firmicutes Clostridiales 0.01335 0.00529 0.00349
4402077 Firmicutes Clostridiales 0.01333 0.08895 0.00233
New.ReferenceOTU15378 Firmicutes Clostridiales 0.01333 0 0.01631
210073 Firmicutes Clostridiales 0.01191 0.14401 0.02097
New.ReferenceOTU10920 Firmicutes Clostridiales Ruminococcaceae Ruminococcus 0.01160 0.00847 0.00116
258969 Firmicutes Clostridiales Lachnospiraceae 0.01128 0.01694 0.01514
New.Cleanup.ReferenceOTU28 Firmicutes Clostridiales 0.01076 0.00529 0.02563
258283 Firmicutes Clostridiales Lachnospiraceae 0.00970 0.03283 0.03844
New.ReferenceOTU15157 Firmicutes Clostridiales Ruminococcaceae Oscillospira 0.00602 0.00635 0.02213
aTaxa that increased with exercise are indicated by gray shading, and taxa that decreased with exercise are shown on white background.
bWeight refers to the importance that the random forests (RF) model accords to each taxon.
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the V4 region using the same primers as Allen et al. (22) but still found no significant
differences in the microbiome in response to exercise. Last, we ran the same bioinfor-
matic pipeline as described by Allen et al. with our data and found no significant
differences, but when the data from their study were analyzed with the bioinformatics
pipeline from this study, we replicated their published significant findings. It could be
that other factors within previous studies including diet differences (19, 20), cage
effects (18), age of mice (45), or slight differences in housing could be leading to
contributing to some of the previously published observations. It is also very difficult to
standardize the starting microbiota of animals in a study. Bar plots summarizing the
taxa found in each of our treatment groups at the start of the study demonstrate
different levels of major phyla between forced and voluntary exercise cohorts (see Fig.
S3 in the supplemental material). Despite ordering the same strains of mice from the
same breeding facility, environmental factors may cause microbiome shifts of signifi-
cant magnitude to obscure treatment influences. Despite the lack of major observable
differences in the microbiome, it was notable that more-complex methods that take
into account microbial interactions like machine learning were able to distinguish
subtle shifts in the mouse microbiome in response to exercise.

For both exercise cohorts, several known and novel associations with exercise
were identified. The Firmicutes and Bacteroidetes phyla dominated the top 30 taxa
important in differentiating between exercise and control treatments. Several other
studies have linked these two phyla with response to exercise (18, 20, 23), along
with the other two important phyla found in the voluntary exercise cohort, Proteo-
bacteria and Actinobacteria. Within the Bacteroidetes phylum, at the genus level,
Bacteroides remains an important taxon in both exercise cohorts, while the S24-7
family is relevant in the voluntary cohort. Out of 18 S24-7 OTUs, 16 increased with
voluntary exercise. Within the Firmicutes phylum, taxa of the order Clostridiales are
found to be important in both cohorts, while Lactobacillus is found to be a relevant
genus in the forced exercise cohort, along with the Ruminococcaceae and Mogibac-
teriaceae families. All five of the Lactobacillus OTUs and all three of the Ruminococ-
cus OTUs decreased with forced exercise. All of these taxa have previously been
described in the literature in association with exercise (18, 20, 23). Rikenellaceae, a
family in the Clostridiales order, was identified as a novel association within the
voluntary exercise cohort, while Lachnospiraceae, a family in the Bacteroidales order
was a novel association found in both cohorts. Several studies have also described
changes in the levels of Bifidobacterium, Prevotella, and Erysipelotrichaceae species
as a result of exercise in mice and humans (18, 20, 22, 23).

The higher classification accuracy results within the voluntary versus forced exercise
mice again support that the voluntary exercise model was more vigorous overall. Out
of the important taxa shared across both exercise programs, it is known that taxa in the
Bacteroidales and Clostridiales orders produce short-chain fatty acids (46) that protect
against obesity and colon cancer (47, 48). Lactobacillus species, found to be important
only in the forced exercise cohort, also produce short-chain fatty acids such as butyrate
and have been shown to be protective against pathogens (18). Lactobacillus species are
also implicated in fat storage; some increase fat storage, while others decrease it
(49–51). The bacterial families Ruminococceae and Mogibacteriaceae, also identified in
the forced exercise cohort are associated with leanness (52). Out of the important taxa
which are novel associations with exercise, bacteria of the Lachnospiraceae and Rikenel-
laceae families have beneficial effects as mentioned above (53, 54).

Conclusions. Contrary to previous studies (21, 22), our initial observations of
bacterial diversity indicate limited alterations to the microbiome in response to mod-
erate exercise. Inflammatory profiles were also not found to be altered from this
exercise. However, a supervised random forest trained model was able to classify mice
as sedentary or exercising based on their microbiome with 97% accuracy for voluntary
exercise modality and 86% for forced exercise modality. Compared to other known
environmental drivers such as diet, moderate exercise may play a more limited role in
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shaping the gut microbiome. Our results are from healthy, young, nonobese mice, and
more study is needed to understand the dynamics and interplay between exercise and
these other important factors on the human microbiome.

MATERIALS AND METHODS
Forty-two 6- to 10-week-old C57BL/6 mice (11 male, 31 female) were obtained from Charles River

Laboratory (Canada). All mice were housed individually on a 12-h light/12-h dark cycle in the University
Animal Care facility for the duration of the experiment. Mice were assigned to either a voluntary exercise
(VE) group (n � 10), a forced exercise (FE) group (n � 11), or a nonexercise control group (n � 21). All
protocols were conducted in accordance with the Canadian Council on Animal Care guidelines and
approved by the Dalhousie University Committee on Laboratory Animals.

Experimental conditions. (i) Voluntary wheel running. Twenty female mice were used for the
8-week voluntary exercise portion of the study. Upon arrival, mice were allowed to acclimatize in
individual housing for 1 week and then were randomly assigned to a voluntary wheel running (VE) group
(n � 10) or a sedentary control (VC) group (n � 10). Mice in the VE group were housed in cages that
contained running wheels, giving the mice 24-h access to the running wheel. Each running wheel was
connected to a data-logger, which counted the number of wheel revolutions per day for the 55-day
study period. Using the diameter of the wheel, the total number of running wheel revolutions were
converted to meters traveled per day.

(ii) Forced treadmill running. Eleven mice (five female, six male) were randomly assigned to a
forced treadmill running (FE) group. Mice were allowed to acclimatize in individual housing for 1 week,
and then FE mice were exposed to the treadmill for 5 days prior to starting the training protocol.
Following acclimation to the treadmill, a forced running protocol was administered for 6 weeks. Five days
a week, FE mice were run for 40 min, starting at a speed of 15 m/min for weeks 1 and 2, and increasing
by 2.5 m/min every 2 weeks, so that by weeks 5 and 6, the mice were running at a speed of 20 m/min.
Benito et al. (55) have previously defined 60 min of treadmill running at 36 m/min as vigorous exercise
for rats, and we therefore defined our forced treadmill running protocol (40 min at 15 to 20 m/min) as
moderate exercise in mice. Control (FC) mice were placed in a clean, empty cage for a comparable
amount of time to mimic handling stress. Mice were trained on the LE8700 single-lane treadmill
equipped with a rest platform and an electronic control unit (Panlab Harvard Apparatus). When mice
stopped running, they were gently nudged off the rest platform and back onto the treadmill belt.

Diet and body mass composition. All exercising and control animals had free access to the same
food (Prolab RMH 3000; LabDiet, Brentwood, MO) and water. Food was weighed out and distributed to
each mouse’s cage every 7 days, and uneaten food from the previous 7 days was weighed to determine
how much food had been consumed.

To assess body composition, mice were weighed every 2 weeks. Dual-energy X-ray absorptiometry
(DEXA) was also used to assess body mass composition of the mice. In brief, mice were anesthetized with
isofluorane and placed in a prostrate position. They were scanned using a Lunar PIXImus2 (GE Medical
Systems) DEXA machine. Whole-body scans, minus the head, were taken and bone marrow density (in
grams per square centimeter), bone marrow content (in grams), body area (in square centimeters), lean
mass (in grams), and fat mass (in grams) were determined. DEXA scans were taken at week 6 of both
exercise protocols.

Fecal sample collection. Starting on day zero of the experimental timeline, fecal samples were
collected on a biweekly basis by placing each mouse in a separate clean cage, waiting until they passed
fecal pellets, and then transferring these pellets to autoclaved microcentrifuge tubes using sterile
forceps. Fecal samples were stored at �80°C until they were required for analysis.

Terminal sample collection. At the end time point of both experimental protocols, the mice were
sacrificed by cervical dislocation while under isofluorane anesthesia. The chest cavity was then rapidly
opened, the aorta was cut, and blood was collected from the chest cavity and placed in a 2-ml Eppendorf
tube. The blood samples were allowed to sit at room temperature for 15 min and then spun at
10,000 � g for 15 min at 4°C. The serum was then removed and stored at �80°C until required for
analysis.

The terminal half of the colon was removed from the animals, and any fecal contents were flushed
out with cold phosphate-buffered saline (PBS) using a rat feeding tube. An incision was then made
longitudinally along the colon, and mucosal contents were scraped off using a glass coverslip and
deposited into an Eppendorf tube. All fecal and mucosal samples were frozen immediately using liquid
nitrogen and stored at �80°C.

DNA isolation, library preparation, and sequencing. DNA was isolated from fecal and mucosal
samples using the PowerFecal DNA isolation kit (Mo Bio Laboratories). Briefly, the protocol follows. In a
tube containing garnet beads and lysis buffer, samples are heated and then homogenized by bead-
beating (disruptor-Genie). After centrifugation, non-DNA organic and inorganic cell contents are precip-
itated from the supernatant. A high-concentration salt solution is then added to the supernatant to allow
DNA to selectively bind the silica membrane of a spin filter column. After being bound to the column and
washed, purified DNA is eluted in low-salt conditions.

Variable regions V6-V8 of bacterial 16S rRNA genes were amplified from all purified DNA using the
PCR conditions and primers from Comeau et al. (56), modified for use on the Illumina MiSeq. The forward
and reverse primers used Nextera Illumina index tags and sequencing adapters fused to the 16S rRNA
gene-specific sequences. Each sample was amplified with a different combination of index tags to allow
for sample identification after multiplex sequencing. Following 16S rRNA gene amplification, paired-end
300-bp plus 300-bp V3 sequencing was performed for all samples on the Illumina MiSeq.

Lamoureux et al.

July/August 2017 Volume 2 Issue 4 e00006-17 msystems.asm.org 10

msystems.asm.org


Bioinformatic analysis. Analysis of sequencing data was done on a Linux virtual machine, using the
Microbiome Helper workflow, specific to 16S rRNA gene analysis, obtained from GitHub (https://github
.com/mlangill/microbiome_helper/wiki/16S-standard-operating-procedure). Paired-end reads were
stitched together using PEAR (57), and then low-quality reads that are less than 400 bp long and have
less than 90% of their bases at a quality score of 30 or more were filtered. Chimeras were removed using
VSEARCH (https://github.com/torognes/vsearch). Operational taxonomic units (OTUs) were generated
within QIIME (58) through the open-reference OTU picking protocol (59) at 97% identity against the
GreenGenes database v13_5 (60). Open-reference picking assigns OTUs by first mapping sequence reads
first to a reference genome database using SortMeRNA (61). Any sequences that fail to align with known
sequences are aligned de novo, meaning that they are clustered with each other based on similarity using
SumaClust (https://git.metabarcoding.org/obitools/sumaclust/wikis/home). OTUs with low counts (based
on a dynamic cutoff of 0.1% of the total number of sequences per sample) were removed, which has
been previously shown to ensure that the number of OTUs is accurately represented (62). Postfiltering,
the average sequence coverage for fecal and mucosal samples, respectively, was 23,558 and 28,865
sequences/sample. For comparison of microbial communities across experimental groups, fecal and
mucosal samples were normalized to a depth of 8,585 and 7,081 reads/sample, respectively. Four fecal
samples and two mucosal samples were excluded due to low coverage.

UniFrac beta-diversity plots were generated using information from the OTU table to illustrate
microbial diversity between exercise and control samples across all time points (63). Beta-diversity plots
used principal coordinate analysis (PCoA) to illustrate the variation in the data. Linear equations were
fitted to the data, so that each equation explained the most amount of variation possible (principal
components). The three largest principal components were then assigned to the x, y, and z axes of a
three-dimensional plot. Each sample is assigned a value based on its principal components and plotted,
with relative proximity to other samples in three-dimensional space correlating to sample similarity.

Inflammatory profile analysis. Inflammatory marker concentrations in serum (IL-1�, IL-16, IL-10, and
TNF-�) were measured in blood samples collected 2 days after the exercise endpoint using a custom
mouse multiplex assay (Bio-Rad). The assay was prepared according to the manufacturer’s instructions
and read using a MagPix multiplex reader (Bio-Rad). Initial serum samples were diluted by a factor of 4.
All samples were run in singlicate. A one-way analysis of variance (ANOVA) was used to determine
whether any differences existed between groups for the aforementioned cytokines.

Statistical analyses for microbial samples. For all analyses, the P value cutoff is 0.05, and standard
errors are reported.

An Adonis test as implemented within the compare_categories.py QIIME script (58) was used to
compare treatment groups and determine whether exercise significantly affects gut microbial diversity.
Adonis is a nonparametric multivariate analysis of variance which in this case compares the abundance
of each bacteria in a sample to its abundance in other samples. It tests the null hypothesis that the
bacterial composition of the samples is the same in control and exercise groups. The R2 value is the effect
size and indicates the percent variation that can be explained by the tested variable, in this case exercise.
The graphical software package STAMP (64) was also used to determine whether exercise significantly
affected levels of individual taxa using unpaired t test with Benjamini-Hochberg false-discovery rate
(FDR) and a P value cutoff of 0.05.

Machine learning. In order to examine subtle changes in community structure, we employed a form
of machine learning, known as supervised learning, where features (in this case OTUs present in the
samples) are used to predict the class (experimental condition) to which a sample belongs. Fecal OTU
data from the two exercise cohorts was input into the python software Scikit-learn (25) to build separate
random forests (RF) models. Using a leave-one-out method, the models were trained to classify samples
from both cohorts as either exercise or control based on their OTU profile. A parameter search from 1
to 30 trees was tested to determine the highest accuracy. Accuracy was reported as the mean of 100
iterations of modeling and testing. Importance of features as output by random forests were averaged
across the iterations and were used to determine the taxa most important for classification.

The random forests model was run with the OTU data 100 times, for both the voluntary and
forced cohorts. The average weights for each OTU were computed, and the top 30 OTUs for each
cohort were selected. The model was run again 100 times using only the selected OTUs, and the
average classification accuracy for samples at each time point was calculated using both true and
randomized sample labels.

Accession number(s). The raw 16S rRNA gene data supporting the conclusions of this article are
available in the European Nucleotide Archive under accession number PRJEB18615.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/

mSystems.00006-17.
FIG S1, TIF file, 0.1 MB.
FIG S2, TIF file, 0.1 MB.
FIG S3, TIF file, 0.1 MB.
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